Hierarchical simulations for the design of supertough nanofibers inspired by spider silk.

نویسندگان

  • Federico Bosia
  • Markus J Buehler
  • Nicola M Pugno
چکیده

Biological materials such as spider silk display hierarchical structures, from nano to macro, effectively linking nanoscale constituents to larger-scale functional material properties. Here, we develop a model that is capable of determining the strength and toughness of elastic-plastic composites from the properties, percentages, and arrangement of its constituents, and of estimating the corresponding dissipated energy during damage progression, in crack-opening control. Specifically, we adopt a fiber bundle model approach with a hierarchical multiscale self-similar procedure which enables to span various orders of magnitude in size and to explicitly take into account the hierarchical topology of natural materials. Hierarchical architectures and self-consistent energy dissipation mechanisms (including plasticity), both omitted in common fiber bundle models, are fully considered in our model. By considering one of the toughest known materials today as an example application, a synthetic fiber composed of single-walled carbon nanotubes and polyvinyl alcohol gel, we compute strength and specific energy absorption values that are consistent with those experimentally observed. Our calculations are capable of predicting these values solely based on the properties of the constituent materials and knowledge of the structural multiscale topology. Due to the crack-opening control nature of the simulations, it is also possible to derive a critical minimal percentage of plastic component needed to avoid catastrophic behavior of the material. These results suggest that the model is capable of helping in the design of new supertough materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip

Spiders achieve superior silk fibres by controlling the molecular assembly of silk proteins and the hierarchical structure of fibres. However, current wet-spinning process for recombinant spidroins oversimplifies the natural spinning process. Here, water-soluble recombinant spider dragline silk protein (with a low molecular weight of 47 kDa) was adopted to prepare aqueous spinning dope. Artific...

متن کامل

Design of superior spider silk: from nanostructure to mechanical properties.

Spider dragline silk is of practical interest because of its excellent mechanical properties. However, the structure of this material is still largely unknown. In this article, we report what we believe is a new model of the hierarchical structure of silk based on scanning electron microscope and atomic force microscope images. This hierarchical structure includes beta-sheet, polypeptide chain ...

متن کامل

Rheological characterization of hydrogels formed by recombinantly produced spider silk

Many fibrous proteins such as spider silks exhibit impressive mechanical properties and are highly biocompatible leading to many potential biomaterial applications. For applications such as tissue engineering, polymer hydrogels have been proposed as an effective means of producing porous but stable scaffolds. Here, nanofiber-based hydrogels were produced from engineered and recombinantly produc...

متن کامل

A novel inexpensive method for preparation of silk nanofibers from cocoons

AbstractIn the present study , a novel method for the production of silk nano fibers are presented . In this way , a mechanical and easy technique is used instead of toxic and costly chemical methods . Also , the separation of silk nano fibers from the cocoon was carried out by mechanical homogenizer and probe ultrasonic homogenizer . After the preparation of silk nanofibers , the product was c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010